China Custom High Quality Keyless Rigid Coupling

Product Description

We can supply Keyless Rigid Coupling, Z1, Z2, Z3, Z4, Z5, Z6, Z8 POWER LOCK, Chinese Power locking device in power locks
Our Power Locks are interchangeable to:
Ringfeder, Tollok, Chiaravalli, Sati, Challenge, Bonfix, Compomac, V-Blok, Ringblok, Kana, KTR

1. Z1 Locking Devices Z11 Locking Devices
2. Z2 Locking Devices Z13 Locking Devices
3. Z3 Locking Devices Z7B Locking Devices
4. Z4 Locking Devices Z12A Locking Devices
5. Z5 Locking Devices Z19A Locking Devices
6. Z6 Locking Devices Z19B Locking Devices
7. Z8 Locking Devices
Feature
1. Easy to install and dismantle.
2. High degree of flexibility
3. Long lifetime and high efficient transmitting
4. Low notching effect
5. Protection of the expensive equipment under over load running.
6. In compliance with quality requirement of developed coutries.
7. Super high quality with lowest price.
Power Lock, Locking Assembly, Locking devices is a keyless shaft-hubs locking device for connecting hubs and shaft with high torque transmission, are linker used between shafts and pulley, which can replace the single key and splines.
They can transmit torque through a set of tightening screw with high strength, which can make the required clamping force between the inner rings and shaft, also between the outer ring and hubs. It’s easy assmebling and diassembling.
They have a good interchangeablity. The screw are with high strength.
Power lock have many item
We produce by CNC machine
Their main material is superior steel.
After machining, they will have smooth and beautiful surface, have long life time and high strength.

1. International standard Power Lock
2. Most popular on European market
3. Steel 42CrMo4 / 4140; C45E / 1045
We are a leading manufacturer of Power Lock in China. More than 65% of our products are exported to West Europe and 20% to North America. We guarantee excellent quality products with competitive price in China.
Our Power Lock are interchangeable to:
Ringfeder, Tollok, Chiaravalli, Sati, Challenge, Bonfix, Compomac, V-Blok, Ringblok, Kana, KTR

GB STHangZhouRD: Z1, Z2, Z3, Z3 LONGER, Z4, Z5, Z6, Z7B, Z8, Z11, Z12A, Z13, Z14, Z19A, Z19B

RINGFEDER GERMANY STHangZhouRD: RFN4071, RFN7012, RFN7013, RFN7110, RFN8006

TSUBAKI JAPAN STHangZhouRD: AS, TF, EL, SL, AD

CHIARAVALLI ITALY STHangZhouRD: RCK11, RCK13, RCK15, RCK16, RCK19, RCK40, RCK45, RCK50, RCK55, RCK70, RCK71, RCK80, RCK95

TOLLOK ITALY STHangZhouRD: TLK110, TLK130, TLK131, TLK132, TLK133, TLK134, TLK200, TLK300, TLK400, TLK603

RINGSPANN GERMANY STHangZhouRD: RLK130, RLK132, RLK133, RLK200

BIKON GERMANY STHangZhouRD: 1003, 1006, 1012, 4000, 5000, 7000A, 7000B, 8000

BONFIX STHangZhouRD: CCE1000, CCE2000, CCE3000, CCE4000, CCE4100, CCE4500, CCE4600, CCE4900, CCE8000, CCE9500

SATI STHangZhouRD: KLGG, KLCC, KLNN, KLDA, KLAA, KLDB, KLAB, KLPP, KLBB, KLHH, KLEE, KLFF, KLMM

COMPOMAC STHangZhouRD: A, B, C, D, ES/DS, EP, SD, F

VBLOK STHangZhouRD: VK400, VK800B, VK700, VK160, VK700.1, VK130, VK112

RINGBLOK STHangZhouRD: 1060, 1100, 1120, 1710, 1720, 1800

KANA STHangZhouRD: 200, 201, 300

KTR STHangZhouRD: KTR100, KTR150, KTR200, KTR201, KTR203, KTR206, KTR225, KTR250, KTR400, KTR603

Features
1. Easy to install and dismantle.
2. High degree of flexibility
3. Long lifetime and high efficient transmitting
4. Low notching effects
5. Protection of the expensive equipment under over load running.
6. In compliance with quality requirement of developed coutries.
7. Super high quality with lowest price.

Clamp power lock, keyless locking device, locking device, shaft locking assemblies, keyless shaft locking device, keyless shaft-hub locking device, lock devices
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

Can Rigid Couplings Handle Misalignment Between Shafts?

Rigid couplings are not designed to handle misalignment between shafts. Unlike flexible couplings that can accommodate slight misalignment through their bending or elastic properties, rigid couplings are intended to provide a fixed and immovable connection between two shafts. As a result, any misalignment between the shafts can lead to increased stress and uneven loading on connected components.

It is essential to ensure precise alignment when using rigid couplings to avoid premature wear and failure of the system. The shafts must be perfectly aligned in both the axial and angular directions before installing the rigid coupling. Proper alignment helps distribute the load evenly and reduces stress concentration on specific areas, such as bearings and keyways.

If a system requires some level of misalignment compensation due to factors like thermal expansion or slight shaft deflection, a flexible coupling should be considered instead. Flexible couplings can tolerate small degrees of angular and axial misalignment while still transmitting torque efficiently and protecting the connected equipment from excessive stress and wear.

In summary, rigid couplings are best suited for applications where precise shaft alignment can be achieved and maintained, while flexible couplings are more appropriate for systems with potential misalignment or other dynamic factors that require some degree of flexibility.

rigid coupling

Use of Rigid Couplings for Motor-to-Shaft and Shaft-to-Shaft Connections

Yes, rigid couplings can be used for both motor-to-shaft and shaft-to-shaft connections in mechanical systems. Rigid couplings are designed to provide a solid and non-flexible connection between two shafts. This characteristic makes them versatile for various applications, including motor-to-shaft and shaft-to-shaft connections.

1. Motor-to-Shaft Connections: In motor-to-shaft connections, a rigid coupling is used to connect the output shaft of an electric motor to the driven shaft of a machine or equipment. This ensures direct power transmission without any flexibility. Motor-to-shaft connections are common in applications where the motor’s rotational motion needs to be transferred to the driven equipment with high precision and efficiency.

2. Shaft-to-Shaft Connections: In shaft-to-shaft connections, a rigid coupling joins two shafts directly, providing a solid and immovable link between them. This is beneficial in applications where precise alignment and torque transmission are essential, such as in precision motion control systems or heavy-duty industrial machinery.

Rigid couplings are available in various designs, such as one-piece, two-piece, and split types, to accommodate different shaft arrangements. The type of rigid coupling used depends on the specific application and the shaft sizes to be connected.

Advantages of Using Rigid Couplings:

– Zero backlash ensures accurate motion transfer and positioning.

– Efficient power transmission without loss due to flexibility.

– Minimal maintenance requirements due to their simple design.

– High torque capacity suitable for heavy-duty applications.

– Tolerance to misalignment (within design limits) enhances versatility.

– Provides system stiffness, reducing the risk of resonance and vibration-related issues.

– Suitable for high-speed applications.

– Versatility for various industrial applications.

Whether it’s connecting a motor to a driven shaft or joining two shafts together, rigid couplings offer reliability, precision, and efficiency, making them a popular choice in numerous mechanical systems.

rigid coupling

Limitations and Disadvantages of Using Rigid Couplings:

Rigid couplings offer several advantages in providing a strong and direct connection between shafts, but they also have certain limitations and disadvantages that should be considered in certain applications:

  • No Misalignment Compensation: Rigid couplings are designed to provide a fixed connection with no allowance for misalignment between shafts. As a result, any misalignment, even if slight, can lead to increased stress on connected components and cause premature wear or failure.
  • Transmit Shock and Vibration: Rigid couplings do not have any damping or vibration-absorbing properties, which means they can transmit shock and vibration directly from one shaft to another. In high-speed or heavy-duty applications, this can lead to increased wear on bearings and other components.
  • No Torque Compensation: Unlike flexible couplings, rigid couplings cannot compensate for torque fluctuations or angular displacement between shafts. This lack of flexibility may not be suitable for systems with varying loads or torque requirements.
  • Higher Stress Concentration: Rigid couplings can create higher stress concentration at the points of connection due to their inflexibility. This can be a concern in applications with high torque or when using materials with lower fatigue strength.
  • More Challenging Installation: Rigid couplings require precise alignment during installation, which can be more challenging and time-consuming compared to flexible couplings that can tolerate some misalignment.
  • Increased Wear: The absence of misalignment compensation and vibration absorption can lead to increased wear on connected components, such as bearings, shafts, and seals.
  • Not Suitable for High Misalignment: While some rigid couplings have limited ability to accommodate minor misalignment, they are not suitable for applications with significant misalignment, which could lead to premature failure.

Despite these limitations, rigid couplings are still widely used in many applications where precise alignment and a strong, permanent connection are required. However, in systems with significant misalignment, vibration, or shock loads, flexible couplings may be a more suitable choice to protect the connected components and improve overall system performance and longevity.

China Custom High Quality Keyless Rigid Coupling  China Custom High Quality Keyless Rigid Coupling
editor by CX 2024-04-24


Posted

in

by

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *